Tag Archives: Demography

Three Questions About Norms

Well, it certainly has been a while since I've written anything here. Life has gotten busy with new projects, new responsibilities, etc. Yesterday, I participated in a workshop on campus sponsored by the Woods Institute for the Environment, the Young Environmental Scholars Conference. I was asked to stand-in for a faculty member who had to cancel at the last minute. I threw together some rather hastily-written notes and figured I'd share them here (especially since I spoke quite a bit of the importance for public communication!).

The theme of the conference was "Environmental Policy, Behavior, and Norms" and we were asked to answer three questions: (1) What does doing normative research mean to you? (2) How do your own norms and values influence your research? (3) What room and role do you see for normative research in your field? So, in order, here are my answers.

What does doing normative research mean to you?

I actually don't particularly like the term "normative research" because it sounds a little too much like imposing one's values on other people. I am skeptical of the imposition of norms that have more to do with (often unrecognized) ideology and less about empirical truth – an idea that was later reinforced by a terrific concluding talk by Debra Satz. If I can define "normative" to mean with the intent to improve people’s lives, then OK.  Otherwise, I prefer to do "positive" research.

For me, normative research is about doing good science. As a biosocial scientist with broad interests, I wear a lot of hats. I have always been interested in questions about the natural world, and (deep) human history in particular. However, I find that the types of questions that really hold my interest these days are more and more engaged in the substantial challenges we face in the world with inequality and sustainability. In keeping with my deep pragmatist sympathies, I increasingly identify with Charles Sanders Pierce's idea that given the "great ocean of truth" that can potentially be uncovered by science, there is a moral burden to do things that have social value. (As an aside, I think that there is social value in understanding the natural world, so I don’t mean to imply a crude instrumentalism here.) In effect, there is a lot of cool science to be done; one may as well do something of relevance.  I personally have little patience for people who pursue racist or otherwise socially divisive agendas and cloak their work in a veil of  free scientific inquiry.  This said, I worry when advocacy interferes with intellectual fairness or an unwillingness to accept that one's position is not actually true.

I think that we are fooling ourselves if we believe that our norms somehow don't have an effect on our research.  Recognizing what these norms that shape your research – whether implicitly or explicitly – helps you manage your bias. Yes, I said manage. I'm not sure we can ever completely eliminate it. I see this as more of a management of a necessary trade-off, drawing an analogy between the practice of science and a classic problem in statistics, between bias and variance. The more biased one is, the less variance there is in the outcome of one’s investigation. The less bias, the greater the likelihood that results will differ from one’s expectations (or wishes). Recognizing how norms shape our research also deals with that murky area of pre-science: where do our ideas for what to study come from?

How do your own norms and values influence your research?

Some of the the norms that shape my own research and teaching include:

transparency: science works best when it is open. This places a premium on sharing data, methods, and communicating results in a manner that maximizes access to information. As a simple example, this norm shapes my belief that we should not train students from poor countries in the use of proprietary software (and other technologies) that they won't be able to afford when they return to their home countries when there are free or otherwise open-source alternatives.

fairness: this naturally includes a sense of social justice or people playing on an equal playing field, but it also includes fairness to different ideas, alternative hypotheses, the possibility that one is wrong. This type of fairness is essential for one's credibility as a public intellectual in science (particularly supporting policy), as noted eloquently in this interview with Dick Lewontin.

respect for people's ultimate rationality: Trying to understand the social, ecological, and economic context of people's decision-making, even if it violates our own normative – particularly market-based economic – expectations.

flexibility: solving real problems means that we need to be flexible in our approach, willing to go where the solutions lead us, learning new tools and collaborating. Flexibility also means a willingness to give up on a research program that is doing harm.

good-faith communication: I believe that there is no room for obscurantism in the academy of the 21st century. This includes public communication. There are, of course, complexities here with regard to the professional development of young scholars.  One of the key trade-offs for young scholars is the need for professional advancement (which comes from academic production) and activism, policy, and public communication. Within the elite universities, the reality is that neither public communication nor activism count much for tenure. However, as Jon Krosnick noted, tenure is a remarkable privilege and, while it may seem impossibly far away for a student just finishing a Ph.D., it’s not really. Once you prove that you have the requisite disciplinary chops, you have plenty of time to to use tenure for what it is designed for (i.e., protecting intellectual freedom) and engaging in critical public debate and communication.

humility: solving problems (in science and society) means caring more about the answer to a problem than one's own pet theory. Humility is intimately related to respect for others' rationality.  It also means recognizing the inherently collaborative nature of contemporary science: giving credit where it is due, seeking help when one is in over one’s head, etc. John DeGioia, President of Georgetown University, quoted St. Augustine in his letter of support for Georgetown Law Student, Sandra Fluke against the crude attacks by radio personality Rush Limbaugh and I think those words are quite applicable here as well.  Augustine implored his interlocutors to "lay aside arrogance" and to "let neither of us assert that he has found the truth; let us seek it as if it were unknown to both." This is not a bad description of the way that science really should work.

What room and role do you see for normative research in your field?

I believe that there is actually an enormous amount of room for normative research, if by "normative research," we mean research that has the potential to have a positive effect on people's lives. If instead we mean imposing values on people, then I am less sure of its role.

Anthropology is often criticized from outside the field, and to a lesser extent, from within it for being overly politicized. You can see this in Nicholas Wade’s critical pieces in the New York Times Science Times section following the American Anthropological Association’s executive committee excising of the word "science" from the field’s long-range planning document. Wade writes,

The decision [to remove the word 'science' from the long-range planning document] has reopened a long-simmering tension between researchers in science-based anthropological disciplines — including archaeologists, physical anthropologists and some cultural anthropologists — and members of the profession who study race, ethnicity and gender and see themselves as advocates for native peoples or human rights.

This is a common sentiment. And it is a complete misunderstanding. It suggests that scientists can't be advocates for native peoples or human rights.  It also suggests that one can't study race, ethnicity, or gender from a scientific perspective.  Both these ideas are complete nonsense.  For all the leftist rhetoric, I am not impressed with the actual political practice of what I see in contemporary anthropology. There is plenty of posturing about power asymmetries and identity politics but it is always done in such a mind-numbingly opaque language and with no apparent practical tie-in to policies that make people's lives better. And, of course, there is the outright disdain for "applied" work one sees in elite anthropology departments.

Writing specifically about Foucault, Chomsky captured my take on this whole mode of intellectual production:

The only way to understand [the mode of scholarship] is if you are a graduate student or you are attending a university and have been trained in this particular style of discourse. That's a way of guaranteeing...that intellectuals will have power, prestige and influence. If something can be said simply, say it simply, so that the carpenter next door can understand you. Anything that is at all well understood about human affairs is pretty simple.

Ultimately, the simple truths about human affairs that I find anyone can relate to are subsistence, health, and the well-being of one’s children. These are the themes at the core of my own research and I hope that the work I do ultimately can effect some good in these areas.

New Grant, Post-Doc Opportunity

Biological and Human Dimensions of Primate Retroviral Transmission
One of the great enduring mysteries in disease ecology is the timing of the AIDS pandemic. AIDS emerged as a clinical entity in the late 1970s, but HIV-1, the retrovirus that causes pandemic AIDS, entered the human population from wild primates many decades earlier, probably near the turn of the 20th century. Where was HIV during this long interval? We propose a novel ecological model for the delayed emergence of AIDS. Conceptually, in a metapopulation consisting of multiple, loosely interconnected sub-populations, a pathogen could persist at low levels indefinitely through a dynamic balance between localized transmission, localized extinction, and long-distance migration between sub-populations. This situation might accurately describe a network of villages in which population sizes are small and rates of migration are low, as would have been the case in Sub-Saharan Africa over a century ago.
We will test our model in a highly relevant non-human primate system. In 2009, we documented three simian retroviruses co-circulating in a metapopulation of wild red colobus monkeys (Procolobus rufomitratus) in Kibale National Park, Uganda, where we have conducted research for over two decades. We will collect detailed data on social interactions, demography, health, and infection from animals in a core social group.
We will also study a series of 20 red colobus sub-populations, each inhabiting a separate, isolated forest fragment. We will determine the historical connectivity of these sub-populations using a time series of remotely sensed images of forest cover going back to 1955, as well as using population genetic analyses of hypervariable nuclear DNA markers. We will assess the infection status of each animal over time and use viral molecular data to reconstruct transmission pathways.
Our transmission models will define the necessary conditions for a retrovirus to persist, but they will not be sufficient to explain why a retrovirus might emerge. This is because human social factors ultimately create the conditions that allow zoonotic diseases to be transmitted from animal reservoirs and to spread. We will therefore conduct an integrated analysis of the root eco-social drivers of human-primate contact and zoonotic transmission in this system. We will study social networks to understand how social resources structure key activities relevant to human-primate contact and zoonotic transmission risk, and we will explore knowledge, beliefs, and perceptions of human-primate contact and disease transmission for a broad sample of the population. We will reconcile perceived risk with actual risk through a linked human health survey and diagnostic testing for zoonotic primate retroviruses.
The ultimate product of our research will a data-driven set of transmission models to explain the long-term persistence of retroviruses within a metapopulation of hosts, as well as a linked analysis of how human social factors contribute to zoonotic infection risk in a relevant Sub-Saharan African population. Our study will elucidate not only the origins of HIV/AIDS, but also how early-stage zoonoses in general progress from "smoldering" subclinical infections to full-fledged pandemics.

I am thrilled to report that our latest EID project proposal, Biological and Human Dimensions of Primate Retroviral Transmission, has now been funded (by NIAID nonetheless!).  I will briefly describe the project here and then shamelessly tack on the full text of our advertisement for a post-doc to work as the project manager with Tony Goldberg, PI for this grant, in the College of Veterinary Medicine, University of Wisconsin, Madison.  This project will complement the ongoing work of the Kibale EcoHealth Project. The research team includes: Tony, Colin Chapman (McGill), Bill Switzer (CDC), Nelson Ting (Iowa), Mhairi Gibson (Bristol), Simon Frost (Cambridge), Jennifer Mason (Manchester), and me. This is a pretty great line-up of interdisciplinary scholars and I am honored to be included in the list.

Biological and Human Dimensions of Primate Retroviral Transmission

One of the great enduring mysteries in disease ecology is the timing of the AIDS pandemic. AIDS emerged as a clinical entity in the late 1970s, but HIV-1, the retrovirus that causes pandemic AIDS, entered the human population from wild primates many decades earlier, probably near the turn of the 20th century. Where was HIV during this long interval? We propose a novel ecological model for the delayed emergence of AIDS. Conceptually, in a metapopulation consisting of multiple, loosely interconnected sub-populations, a pathogen could persist at low levels indefinitely through a dynamic balance between localized transmission, localized extinction, and long-distance migration between sub-populations. This situation might accurately describe a network of villages in which population sizes are small and rates of migration are low, as would have been the case in Sub-Saharan Africa over a century ago.

We will test our model in a highly relevant non-human primate system. In 2009, we documented three simian retroviruses co-circulating in a metapopulation of wild red colobus monkeys (Procolobus rufomitratus) in Kibale National Park, Uganda, where we have conducted research for over two decades. We will collect detailed data on social interactions, demography, health, and infection from animals in a core social group.

We will also study a series of 20 red colobus sub-populations, each inhabiting a separate, isolated forest fragment. We will determine the historical connectivity of these sub-populations using a time series of remotely sensed images of forest cover going back to 1955, as well as using population genetic analyses of hypervariable nuclear DNA markers. We will assess the infection status of each animal over time and use viral molecular data to reconstruct transmission pathways.

Our transmission models will define the necessary conditions for a retrovirus to persist, but they will not be sufficient to explain why a retrovirus might emerge. This is because human social factors ultimately create the conditions that allow zoonotic diseases to be transmitted from animal reservoirs and to spread. We will therefore conduct an integrated analysis of the root eco-social drivers of human-primate contact and zoonotic transmission in this system. We will study social networks to understand how social resources structure key activities relevant to human-primate contact and zoonotic transmission risk, and we will explore knowledge, beliefs, and perceptions of human-primate contact and disease transmission for a broad sample of the population. We will reconcile perceived risk with actual risk through a linked human health survey and diagnostic testing for zoonotic primate retroviruses.

The ultimate product of our research will a data-driven set of transmission models to explain the long-term persistence of retroviruses within a metapopulation of hosts, as well as a linked analysis of how human social factors contribute to zoonotic infection risk in a relevant Sub-Saharan African population. Our study will elucidate not only the origins of HIV/AIDS, but also how early-stage zoonoses in general progress from "smoldering" subclinical infections to full-fledged pandemics.

Post Doctoral Opportunity

The Goldberg Lab at the University of Wisconsin-Madison invites applications for a post-doctoral researcher to study human social drivers of zoonotic disease in Sub-Saharan Africa.   The post-doc will be an integral member of a new, international, NIH-funded project focused on the biological and human dimensions of primate infectious disease transmission in Uganda, including social drivers of human-primate contact and zoonotic transmission.  This is a unique opportunity for a post-doctoral scholar with training in the social sciences to study human-wildlife conflict/contact and health and disease in a highly relevant ecological setting.  The following criteria apply.

  1. Candidates must have completed or be near to completing a PhD in the social sciences, in a discipline such as anthropology, geography, sociology, behavioral epidemiology, or a relevant discipline within the public health fields.
  2. Candidates must have a demonstrated interest in health and infectious disease.
  3. Candidates must have prior field experience in Sub-Saharan Africa.
  4. Candidates must be willing to relocate to Madison, Wisconsin for three years.
  5. Candidates must be willing to spend substantial time abroad, including in Sub-Saharan Africa and at partner institutions in the United Kingdom.
  6. Candidates must have experience with collection and analysis of both quantitative and qualitative data.  Familiarity with methods such as social network analysis, GIS, participatory methods, and survey design would be advantageous.

The successful candidate will help lead a dynamic international team of students and other post-docs in a multi-institutional, multidisciplinary project.  Duties involve a flexible combination of fieldwork, analyses, and project coordination, in addition to helping to mentor students from North America, Europe, and Africa.  The successful applicant will be expected to explore new research directions of her/his choosing, assisted by a strong team of collaborators.

University of Wisconsin-Madison is a top-notch institution for research and training in the social and health sciences.  Madison, WI, is a vibrant city with outstanding culture and exceptional opportunities for outdoor recreation.

Applicants should send a current CV, a statement of research interests and qualifications (be sure to address the six criteria above), and a list of three people (names, addresses, e-mails) who can serve as references.

Materials and inquiries should be sent to Dr. Tony L. Goldberg (tgoldberg@vetmed.wisc.edu).  Application materials must be received by September 12, 2011 for full consideration; the position is available starting immediately and requires a three-year commitment.

Tragedy in Norway

I am saddened and sickened to learn of the horrific events in Norway today. As I write this, the news is that a total of 80 have died, 7 in the bombing in Oslo and the rest, presumably, at the youth camp in Utoya Island. This is an unimaginable tragedy for the parents of these children and would be wherever such an event occurred.  The impact on aggregate mortality  just happens to be particularly acutely noticeable in a low-mortality country such as Norway.  I look at Norwegian mortality data quite a bit because I use mortality change in Norway as an example in at least two classes I teach. To give a sense of what an enormous impact 80 violent deaths have on the overall mortality of a relatively small, and very low-mortality country like Norway, I plotted the number of deaths by age on semi-logarithmic axes for the latest year for which we have data (2009). I then added the 73 deaths (in red), assuming for simplicity that they all fell on 16 year-olds (since it was a youth camp).  While clearly not true, this allows us to compare the scale of this mass murder with the pace of death in Norway as a whole.

norway-deaths-2009

It is plain to see that, beyond the clear impact such an event has on the families directly effected, this senseless act has a substantial effect on the aggregate pattern of mortality for the entire country of Norway.

Models of Human Population Growth

The logistic equation is a model of population growth where the size of the population exerts negative feedback on its growth rate. As population size increases, the rate of increase declines, leading eventually to an equilibrium population size known as the carrying capacity.  The time course of this model is the familiar S-shaped growth that is generally associated with resource limitation. This model has only two parameters: r is the intrinsic growth rate and K is the carrying capacity. The rate of increase in the population declines as a linear function of population size.  In symbols:

 \frac{dN}{dt} = rN (1 - \frac{N}{K})

When the population size is very small (i.e., when N is close to zero), the term in the parentheses is approximately one and population growth is approximately exponential.  When population size is close to the carrying capacity (i.e., N \approx K), the term in parentheses approaches zero, and population growth ceases. It is straightforward to integrate this equation by partial fractions and show that resulting solution is indeed an S-shaped, or sigmoid, curve.

Raymond Pearl was a luminary in human biology.  A professor at Johns Hopkins University, a founder of the Society for Human Biology and the International Union for the Scientific Study of Population (IUSSP), Pearl also re-discovered the logistic growth model (which was originally developed by the great Belgian mathematician Pierre François Verhulst).  In the logistic model, Pearl believed he had found a universal law of biological growth at its various levels of organization.  In his book, The Biology of Population Growth, Pearl wrote:

... human populations grow according to the same law as do the experimental populations of lower organisms, and in turn as do individual plants and animals in body size. This is demonstrated in two ways: first by showing as was done in my former book "Studies in Human Biology," that in a great variety of countries all of the recorded census history which exists is accurately described by the same general mathematical equation as that which describes the growth of experimental populations; second, by bringing forward in the present book the case of a human population-the indigenous native population of Algeria-which has in the 75 years of its recorded census history practically completed a single cycle of growth along the logistic curve.

In addition to Algeria, Pearl fit the logistic model to the population of the United States from 1790-1930. The fit he produced was uncanny and he confidently predicted that the US population would level out at 198 million, since this was the best-fit value of K in his analysis.  I have plotted the US population size (from the decennial census) as black points below, with Pearl's fitted curve in grey. We can see that the curve fits incredibly well for the period 1790-1930 (the span to which he fit the data), but the difference between prediction and empirical reality becomes increasingly large after 1950 (yep, that would be thanks to the Baby Boom).

pearl-badfit

Why does the logistic model fail so spectacularly in this case (and many others)?

The logistic model is phenomenological, rather than mechanistic. A phenomenological model is a mathematical convenience that we use to describe some empirical observations, but has no foundations in mechanisms or first principles. Such models can be useful when theory is lacking to explain some phenomenon or when the mathematics that would be required to model the mechanisms is too complicated. You can make a prediction from a phenomenological model, but I wouldn't bet the farm on that prediction. In the absence of an actual understanding of the mechanisms producing the population change, the predictions can go horribly wrong, as we see in the case of Raymond Pearl's fit.

Specifically, the logistic model  fails to consider mechanisms of population regulation. When density increases, what is affected?  Birth rates? Death rates? The r parameter in the logistic model is simply the difference in the gross birth and death rates when there are no conspecifics present.  In general, when the birth rate exceeds the death rate, a population increases.  The linear decrease in r with increasing population size presumably can come about by either the birth rate decreasing or the death rate increasing.  The logistic model is indifferent to the specific cause of slowing.  It just stops increasing when N=K. Is it possible that, in real populations, increasing the death rate and decreasing the birth rate might have qualitatively different effects on population growth? We'll see.

This probably goes without saying, but there is no capacity for the positive feedbacks with population size. In her classic work, The Conditions of Agricultural Growth, Danish economist Esther Boserup noted that population growth often stimulates innovation. Population pressure might cause an agricultural group that has run out of land to intensify cultivation by improving the land or multi-cropping, thereby facilitating even greater population growth.  Various authors, including Ken Wachter and Ron Lee (both at Berkeley) and Jim Wood at Penn State have noted that real populations probably incorporate both Malthusian (i.e., conditions leading to increased mortality, decreased fertility, and general misery with increased population size) and Boserupian phases in their dynamics.  Wood coined the term "MaB Ratchet" (MaB = Malthus and Boserup) which describes the following dynamic: Malthusian pressure incites  Boserupian innovation, relaxing negative feedback and allowing further population growth.  While a population is undergoing a Boserupian expansion, quality of life improves. Alas, given enough time, the population will always return to "the same level of marginal immiseration." (Wood 1998: 114). Such complex regimes of positive and negative population feedback are not a possibility .

One final problem with the logistic model is that there is no structure -- all individuals are identical in terms of their effect on and contribution to population growth. Human vital rates vary predictably – and substantially – by age, sex, geographic region, urban vs. rural residence, etc. And then there's the issue of unequal resource distribution.  All individuals in a population are hardly equal in their consumption (or production) and so we should hardly expect each to exert an identical force on population growth.

So are there better alternative models for human population growth that incorporate the sensible idea that as populations push the limits of their resource base, growth should slow down and eventually cease? There is now.  My Stanford colleague and collaborator in various endeavors, Shripad Tuljapurkar, has a series of papers in which he and his students develop mechanistic population models for agricultural populations that specifically link age-specific vital rates (i.e., survivorship, fertility), agricultural production and labor, and specific (age-specific) metabolic needs for individuals engaged in heavy physical labor.  The models start with an optimal energy supply for survival and reproduction.  As food gets more scarce, mortality increases and fertility decreases.  The model has an equilibrium where birth and death rates balance. A key feature of the model is the idea of the food ratio, which is the number of calories available to consume in a given year relative to the number of calories needed to maximize survival and fertility. The food ratio tells us how hungry the population is. In the first of a series of three papers, Lee and Tuljapurkar (2008) develop this model and show how changes in mortality, fertility, and agricultural productivity actually all have distinct effects on the population growth rate, equilibrium, and how hungry people are at equilibrium. Analysis of their model yielded the following results:

  • Increasing agricultural productivity or the amount of time spent working on agricultural production increases the food ratio, while keeping the population growth rate largely unchanged
  • Increasing baseline survival increases the food ratio but decreases the population growth rate
  • Decreasing fertility only decreases the growth rate – the food ratio remains unchanged

So, we see that it is possible that increasing the death rate and decreasing the birth rate might have qualitatively different effects on population growth. In fact, it seems quite likely, given Lee & Tulja's model.

We don't, as yet, have the kind of test that we gave Raymond Pearl's application of the logistic model to US population size. It would be very nice if we could use the Lee-Tulja model to make a prediction about the future dynamics of some population (and its distribution of hunger) and challenge this prediction with data not used for fitting the model in the first place. This said, I think that theoretical exercise alone is enough to demonstrate the importance of moving beyond phenomenological population models whenever possible. We are unlikely to make accurate predictions or understand the response of population to environmental and social changes in the absence of mechanistic models.

References

Lee, C. T., and S. Tuljapurkar. 2008. Population and prehistory I: Food-dependent population growth in constant environments. Theoretical Population Biology. 73:473–482.

Wood, J. W. 1998. A theory of preindustrial population dynamics: Demography, economy, and well-being in Malthusian systems. Current Anthropology. 39 (1):99-135.

Ecology, Evolution, and Human Health

Yesterday, I spent most of the day collecting content for my upcoming classes this spring and getting the course web sites together.  For the first time in a while, I will (officially) be teaching two classes in one quarter (which effectively means teaching three or four when I add the other things like lab meetings in).  The first is our graduate class on statistics in the anthropological sciences.  I taught something like this back in the old department (i.e., Anthropological Sciences) but haven't taught it in years (though a Google search for "department of anthropological sciences stanford" turns up the syllabus for this class).  It is technically a requirement for Ph.D. students in the Ecology and Environment focus within Anthropology, so it's about time.  It will be fun to teach again and we're looking to use the class as a platform to develop resources for anthropologists doing statistical work (more later).

The other class that I will be teaching starting next week is Ecology, Evolution, and Human Health, a class I first taught last year. This class is meant to be an introduction to the Ecology and Environment undergraduate focus in Anthropology.  I'm actually really looking forward to teaching it again.  The course material forms the core of a book I am writing on human population biology and my attempts at improving the lectures has done wonders for my writing output of late.  We'll see what happens when the quarter actually starts. Hopefully, between trips to Rwanda and Tanzania and moving into Arroyo House this summer, I will find time to finish it!

Back in December, when the is-anthropology-science kerfuffle was going strong, I wrote a blog post in which I suggested that if you want to feel good about the future of scientific anthropology (which, I admit, can sometimes be difficult, even for an obstinate optimist), all you need to do is look at the great work coming from the new generation of trans-disciplinary anthropologists (and other biosocial scientists).  At the time, I put together a short list of people whose work I greatly admire.  These included:

  • Craig Hadley at Emory on food security and psychological well-being
  • Amber Wutich at ASU on vulnerability, water security, and common-pool resources
  • Lance Gravlee at UF on the embodiment of racial discrimination and its manifestations in health
  • Brooke Scelza at UCLA on parental investment and childhood outcomes
  • Dan Hrushka at ASU on how cultural beliefs, norms and values interact with economic constraints to produce health outcomes
  • Crickette Sanz at Washington University on multi-ape ecology of the Goualougo Triangle, Republic of Congo
  • Herman Pontzer at CUNY on measuring daily energy expenditures in hunter-gatherers
  • Rebecca and Douglas Bird on subsistence and signaling among Martu foragers

In preparing for Anthro 31, I started to put together a list of links to people doing the kind of work we will discuss.  In a pique of obsessiveness yesterday, I greatly expanded that list.  It occurred to me that this list is somewhat orphaned in an obscure directory for a particular class I occasionally teach and that it would make sense to share it more generally.  So, here we go, copied wholesale from my class links page (though that page still contains links to books, professional societies, and other resources for students interested in human ecology, demography, health, etc.):

There are a number of excellent practicing anthropologists who maintain science blogs. Among these are Kate Clancy's (UIUC) Context and Variation, Daniel Lende and Greg Downey's Neuroanthropology, Julienne Rutherford's AAPA BANDIT, and Patrick Clarkin's blog dedicated to biological anthropology, war and health, growth nutrition. Along with Rebecca Stumpf, Kate Clancy is also the director of the Laboratory for Evolutionary Endocrinology (which has its own blog) at the University of Illinois.

Upon further reflection, I think that the University of Illinois has to be a major contender for best place to study biological anthropology. Wow, they've got an amazing group of biological anthropologists there. Stanley Ambrose, Kate Clancy, Paul Garber, Lyle Konigsberg, Steve Leigh, Ripan Malhi, John Polk, Charles Roseman, Laura Shackelford, Rebecca Stumpf. Too many to link to directly. I don't know all of them, but the ones I know are outstanding. Yipes! I think they may be plotting to take over the field.

Back to the blog front, you can always count on gems of anthropological, evolutionary, and political wisdom from Greg Laden as well.

Susan C. Antón (NYU) and Josh Snodgrass (Oregon) organize the Bones and Behavior Working Group, the goal of which is to foster greater synthesis across the different sub-areas of biological anthropology. Of particular interest are their standardized protocols for anthropometry.

Mario Luis Small, at the University of Chicago, has done some really outstanding work measuring how social institutions affect social capital and the impact such differences in social capital actually have for people's well-being.

Richard Bribiescas is the author of Men: Evolutionary and Life History and is director of the Reproductive Ecology Laboratory at Yale. Yale is also now the home to Catherine Panter-Brick who also happens to be the senior editor for medical anthropology at Social Science and Medicine.

A number of excellent human biologists find their home in the Laboratory for Human Biology Research at Northwestern. This includes Bill Leonard, Thom McDade, and Chris Kuzawa. Rumor has it that alumna Elizabeth Sweet is moving back to Northwestern as well. She is doing truly innovative work integrating the rigorous analysis of biomarkers of health (and a bicultural perspective favored by the Northwestern group) and the political economy of economic and social disparities -- really getting at how inequality 'gets under the skin.'  I really look forward to seeing what comes from her future research.

Karen Kramer, in the department formerly known as (Biological) Anthropology at Harvard, is a real leader in integrating evolutionary, demographic, and economic perspectives on human reproduction and the life histories.

Patrick Clarkin at UMass, Boston has a very interesting research program employing biocultural and evolutionary models to understand the effects of war on nutrition and growth among SE Asian diaspora. UMass, Boston is also home to Colleen Nyberg who does great work on acculturation and health, the psychobiology of stress and HPA function, and growth and development.

Julienne Rutherford at the University of Illinois, Chicago School of Dentistry works on the role of the intrauterine environment on health. Of particular interest for this class is her collaborative work on understanding the epigenetic regulation of placental systems of amino acid transport as part of the Cebu Longitudinal Study in the Philippines. UIC also has a number of excellent human biologists scattered about in anthropology, including Betsy Abrams and Crystal Patil, Epidemiology (Bob Bailey) and Community Health Sciences (Nadine Peacock).

Let's not forget our friends across The Pond. Durham may have lost Catherine Panter-Brick to Yale, but they got a number of new folks who, when combined with the veterans, make it a very appealing place to study ecological/evolutionary anthropology. Among the faculty there are my colleagues Gillian Bentley, Rebecca Sear, and Frank Marlowe, and numerous others. Rebecca does very sophisticated work in anthropological demography, while Frank is one of the leading ethnographers of contemporary hunter-gatherers (and my collaborator on our Hadza demography project).

Ruth Mace, in my opinion, does some of the best work in human behavioral ecology right now and she keeps churning out top students at UCL.

I'm looking forward to working with Mhairi Gibson at Bristol on our new project on the transmission dynamics of primate retroviruses and human-wildlife contact in Uganda. She has done excellent work on the behavioral ecology of reproduction and parental investment in Ethiopia.

I will also mention a number of excellent researchers who teach classes that are relevant to Ecology, Evolution, and Human Health:

Mark Moritz at Ohio State University has established a Hunter-Gatherer Wiki is conjunction with his course on Hunter-Gatherers. Mark came and gave a terrific talk on livestock exchanges among FulBe pastoralists at the MAPSS colloquium this year.

Mike Gurven at UCSB teaches a course on the behavioral ecology of hunter-gatherers. Mike does some of the most interesting biodemographic work out there these days.

Bruce Winterhalder at UC Davis, a founding father of human behavioral ecology, has a very interesting course on classics in cultural ecology.

Claudia Valeggia, at Penn, does great work among the Toba people of Argentina teaches a class on reproductive ecology.

Lots of good people. Lots of good work.  Surely, there is reason for optimism...

Jennifer Burney Lecture

I've spent the better part of the day editing web pages as I prepare to teach two courses this spring. Given that I've more-or-less wasted the day with necessary but not especially intellectually rewarding tasks, I thought that I would take a moment to post something really important and scientifically interesting. Jennifer Burney, of Stanford's Program in Food Security and the Environment, gave a talk entitled "Food's Footprint: Agriculture and Climate Change" at Oregon State's Food for Thought Series. We've known Jen for a long time now.  If memory serves me correctly, she was in my wife Libra's section of the American Civil War at Harvard in Fall of 1995. Later she was a student in Mather House, where we were resident tutors from 1997-2001. She went on to do a Ph.D. in physics at Stanford and then moved into a post-doctoral fellowship at FSE.

Jen and all the folks at FSE are doing great and fundamental work.  In this talk, she presents results that may seem somewhat counter-intuitive. Namely, she shows that the agricultural intensification attendant to the Green Revolution has been good for global carbon budgets -- and feeding hungry people.  It's all about counterfactuals. I am looking forward to reading this work since some of these counterfactuals depend critically on demographic assumptions.

As she says in the talk, just because the results suggest that intensive agriculture is good from a global warming perspective, doesn't take Big Agriculture off the hook. There are items that their models don't incorporate (but could in principle) and they don't consider anything other than carbon budgets.  It would be nice to think of a way of uniting all the costs and benefits of intensification in a single framework.

This is very important stuff and the work highlights the complexities of population, environment, and food production. I look forward to seeing more work from Jen and her collaborators at FSE.

Update on Stanford Workshop on Migration and Adaptation

Since my last update, we have added another faculty member to the workshop on Migration and Adaptation. Loren Landau, the Director of the African Centre for Migration and Society (ACMS) (formerly Forced Migration Studies Programme, FMSP) at Wits University in Johannesburg, South Africa will be joining us to discuss conceptual issues in understanding African migration as well as research opportunities through ACMS. This means that we have the following confirmed speakers:

  • James Holland Jones, Department of Anthropology and Woods Institute for the Environment, Stanford University (organizer): Formal Models of Migration; Population Projection
  • Shripad Tuljapurkar, Department of Biology, Stanford University (organizer): Stochastic Forecasting
  • Eric Lambin, Environmental and Earth Systems Science and Woods Institute for the Environment, Stanford University: Pixels to People Approaches to Studying Migration
  • David Lobell, Environmental and Earth Systems Science and Woods Institute for the Environment, Stanford University: Global Climate Change and Food Insecurity
  • William H. Durham, Department of Anthropology and Woods Institute for the Environment, Stanford University: Smallholder Responses to Risk and Uncertainty
  • Ronald Rindfuss, Carolina Population Center, University of North Carolina and The East-West Center: Population and Environment; Microsimulation
  • Amber Wutich, School of Human Evolution and Social Change, Arizona State University, Water Insecurity
  • Lori Hunter, Department of Sociology, University of Colorado: Migration and Health
  • David Lopez-Carr, Department of Geography, University of California Santa Barbara: Migration and Fertility on the Forest Frontier
  • Loren Landau, African Centre for Migration Studies, Witwatersrand, Conceptual and Empirical Issues in African Migration

This is a great line-up and I'm very excited about this (and there are still a couple invitations pending based on complicated field schedules). We will hold the workshop at the IRiSS facility at 30 Alta Rd., bordering the main campus. This is a lovely spot for a workshop.

Details on applying for the workshop are contained here. We will pay for approved travel expenses of accepted students, post-docs, and junior faculty associated with NICHD-funded population centers.

Stanford Migration and Adaptation Workshop

Information on our NICHD-funded April formal demography workshop on migration and adaptation is now posted on the website Stanford Center for Population Research (SCPR, pronounced "scooper").  SCPR is itself hosted by Stanford's Institute for Research in the Social Sciences (IRiSS), which is also the umbrella organization for the Methods of Analysis Program in the Social Sciences (MAPSS), a program that I currently direct. We will be having this little shindig at the new IRiSS facility on Alta Road, a lovely location on the hill behind Stanford's main campus, quite near the Center for Advanced Study in the Behavioral Sciences. All of these workshops have been terrific, but I am particularly excited about this one because it brings together so many of the threads of work going on right here at Stanford on human ecology, demography, and the biophysical environment.  Much of this work is facilitated by the Woods Institute for the Environment, where I and a number of the other Stanford-based speakers sit.

As a quick teaser of the kind of work that we will discuss, I want to draw people's attention to two papers by Stanford faculty participating in the workshop that are just out this week.  Eric Lambin has a paper (which also happens to be his inaugural paper in PNAS as a member of the NAS) on the interactions between globalization, land use, and future land scarcity. I saw a talk on this last week and it was terrific. Lambin and co-author Patrick Meyfroidt argue that there are four socio-economic mechanisms (displacement, rebound, cascade, and remittance effects) that are amplified by by the process of economic globalization and that can accelerate land conversion. David Lobell has a new paper out today in Nature Climate Change in which he and his co-authors capitalize on a treasure-trove of historical agricultural trials in Africa to measure the impact of warming on maize production.  They find that approximately 65% of areas will experience a decline in productivity with a one-degree rise in global temperature if rain patterns are optimal.  If rain is sub-optimal, as is likely to be the case, then every site would experience reduced productivity.  This supports David's contention that the effects on agricultural productivity of temperature increase from global climate change can not be understood except in the context of changes in rainfall as well.

Potential students who are interested in studying these issues at Stanford have a number of options.  If anthropology is your thing, we have a Ph.D. focus area in Ecology and Environment within the Department of Anthropology.  Bill Durham, Lisa Curran, Rebecca Bird, Douglas Bird, and I all teach in this area. Another option, for the more interdisciplinarily inclined, is E-IPER.  This is a topic I will have to take up in more detail in a later post since I actually have to do some work organizing our workshop now!

New Formal Demography Workshop: Migration and Adaptation

We will be having another of our occasional Stanford Workshops in Formal Demography this April 28th-30th. The theme this time will be "Migration and Adaptation," and we have a terrific lineup of speakers coming. As in the past, the workshop is funded by NICHD and receives substantial suport from the Stanford Institute for Research in the Social Sciences (IRiSS). What is somewhat different this time is that we actually have our own center now, The Stanford Center for Population Research (SCPR). Here's the basic idea for the workshop:

Mobility is a common form of human adaptation to social or environmental risks.  Forms of human mobility vary with regard to permanency and spatial scale.  For example, foragers or pastoralists may move seasonally in response to resource scarcity and opportunity throughout a more or less stable greater home range. Smallholders and agrarian peasants might be displaced on a more permanent basis as a result of conflict or extreme resource scarcity, migrating internally to cities or other relatively nearby localities perceived to be less risky.  International economic migrants may travel long distances on a more or less permanent basis in search of economic opportunity abroad.

Global climate change is predicted to increase migration rates substantially by the middle of the 21st century.  This increase in migration is likely to result from multiple, interacting causal mechanisms including an increase in adverse weather events (e.g., droughts, floods), an increase in resource-related conflicts, or declining viability of local environments arising from various forms of land-use/land-cover change.  These increases will add to the already substantial movement of human population from rural to urban areas, in response to internal social displacement, and from other economic migration.

Understanding human migration requires the input from scientists from a wide range of disciplines. We are particularly interested in approaches that combine the formalism of demography, on-the-ground social research, and remotely-sensed information of the biophysical environment, the so-called "pixels to people" approach.

In this workshop, we will bring together demographers, anthropologists, economists, and geographers to develop a methodological toolkit for understanding migration as an adaptation to risk.  The specific aim of the workshop is to promote knowledge of methods and perspectives from different disciplines, disseminate information about the growing wealth of demographic data on the biophysical environment and human migration, and to foster collaborative and interdisciplinary work. The format will consist of lectures by invited researchers to an audience of other researchers, selected graduate students, and junior faculty. The three-day workshop will have approximately ten faculty and 20 students, whose travel, lodging, and meals will be covered.  The format provides substantial time for discussion. The workshop will be held at the Institute for Research in the Social Sciences (IRiSS), Stanford 28-30 April 2011.

Confirmed speakers include:

  • James Holland Jones, Department of Anthropology and Woods Institute for the Environment, Stanford University (organizer): Formal Models;
    Population Projection
  • Shripad Tuljapurkar, Department of Biology, Stanford University (organizer): Stochastic Forecasting
  • Eric Lambin, Environmental and Earth Systems Science and Woods Institute for the Environment, Stanford University: Pixels to People
  • David Lobell, Environmental and Earth Systems Science and Woods Institute for the Environment, Stanford University: Global Climate Change and Food Insecurity
  • William H. Durham, Department of Anthropology and Woods Institute for the Environment, Stanford University: Smallholder Responses to Risk and Uncertainty
  • Ronald Rindfuss, Carolina Population Center, University of North Carolina and The East-West Center: Population and Environment; Microsimulation
  • Amber Wutich, School of Human Evolution and Social Change, Arizona State University, Water Insecurity
  • Lori Hunter, Department of Sociology, University of Colorado: Migration and Health
  • David Lopez-Carr, Department of Geography, University of California Santa Barbara: Migration and Fertility on the Forest Frontier

A (rather large) printable flier for the workshop can be found here.  It includes information on how to apply.  Hopefully, we will soon have an all official-like webpage through IRiSS as well, which I will point to when it goes live.

Typologies of Critique

Greg Downey over at Neuroanthropology has a fantastic post on the most recent flare-up of the anthropology-is-it-science-or-is-it-literature wars.  There is an awful lot of wise prose to be found in this post (and some disturbing information about the labor action at Macquarie University), but the thing that tickled me more than anything was his typology of criticism.  I love these sort of typologies as intellectual play-things and have lots of my own (that probably any of my grad students or post-docs would be happy to tell you about over a beer some time).  Greg's typology of stupid criticisms:

  1. Critique for incompleteness, "where the critic points out something tangentially related to the author’s topic or argument and then asserts that this missing element is THE most important consideration, so the argument is hopelessly, fatally flawed."
  2. Critique from creative misunderstanding,  where "the critic latches onto a single term or phrase, intentionally misunderstands it or comes up with an interpretation that could only occur to the most hostile, cranky, ill-disposed reader, and then projects the misunderstanding onto a straw version of the presenter."
  3. Critique from guilt by association, where "the critic sees some sort of link between what the author writes and some deeply loathed intellectual villain, draws some sort of tenuous connection, and then just substitutes the villain’s ideas for the argument, essay or analysis in question.

Awesome.  I will need to get to work thinking of other willfully bone-headed modes of critique. I will think of this post every time I review a paper or grant proposal from now on...

A similar typology that I came up with attending demography talks, first at the Harvard Center for Population and Development and later at the Population Association of America meetings, deals with discussants. The phenomenon of the discussant is still something I find a bit bizarre, as I find having a discussant adds absolutely nothing to the intellectual merit of a talk or panel in the vast majority of cases.  It also chafes a bit at my science-as-meritocracy ethos (why exactly do I need to have the talk I just sat through explained to me by some guy in a suit?).

The different flavors of discussant that I have identified include:

  1. The redundant discussant: "Author #1 said this.  Author #2 said this other thing. Author #3 said something else..." Snooze.
  2. The bitchy discussant: "The author claimed to use a Mann-Whitney U when he really used Kendall's tau. It's not clear why they used Coale-Demeny West 5 when a UN life table would have clearly been preferable. The assumptions of the stable model are not exactly met. And you didn't cite me!"
  3. The pandering discussant: "In brief, this paper will change the course of human affairs.  I feel an extraordinary privilege just being in the same room as this author on this day. Hosanna."
  4. The orthogonal discussant: "Well, we just heard a number of very interesting talks, now let me tell you about my work..."

Very rarely (so much so that it doesn't really merit a category), a discussant does what he or she is supposed to do: synthesize and provide novel insight about how the papers in a session relate to each other. I have personally experienced all of the forms of discussant except the panderer (at least in its fullest form).  I did witness a friend receive the panderer's treatment much to her embarrassment and, frankly, that of everyone in the room. I think it's fair to say that everyone thought she had indeed given a very fine paper, though had not quite changed history. I think I actually prefer the orthogonal discussant to all the others because that way you get to see another talk rather than just hearing a bunch of [redundancy, bitchiness, pandering], which is not the best use of time at academic meetings. As anyone who has ever been to an academic meeting knows the best use of one's time is, as Greg notes in his post "drink[ing] heavily with my friends, sneak[ing] off repeatedly for Mexican food, and spend[ing] most daylight hours in the publishers’ expo." Honestly, this is one of the reasons why I've decided I actually like the AAAs. True, there is generally very little in the program that actually interests me.  However, there are lots of people who interest me who attend.  I can hang out and have long lunches and long dinners and even longer sessions drinking and talking anthropology with cool people and not feel the slightest bit of guilt at missing all those sessions! What could be better?