Tag Archives: science

Three Questions About Norms

Well, it certainly has been a while since I've written anything here. Life has gotten busy with new projects, new responsibilities, etc. Yesterday, I participated in a workshop on campus sponsored by the Woods Institute for the Environment, the Young Environmental Scholars Conference. I was asked to stand-in for a faculty member who had to cancel at the last minute. I threw together some rather hastily-written notes and figured I'd share them here (especially since I spoke quite a bit of the importance for public communication!).

The theme of the conference was "Environmental Policy, Behavior, and Norms" and we were asked to answer three questions: (1) What does doing normative research mean to you? (2) How do your own norms and values influence your research? (3) What room and role do you see for normative research in your field? So, in order, here are my answers.

What does doing normative research mean to you?

I actually don't particularly like the term "normative research" because it sounds a little too much like imposing one's values on other people. I am skeptical of the imposition of norms that have more to do with (often unrecognized) ideology and less about empirical truth – an idea that was later reinforced by a terrific concluding talk by Debra Satz. If I can define "normative" to mean with the intent to improve people’s lives, then OK.  Otherwise, I prefer to do "positive" research.

For me, normative research is about doing good science. As a biosocial scientist with broad interests, I wear a lot of hats. I have always been interested in questions about the natural world, and (deep) human history in particular. However, I find that the types of questions that really hold my interest these days are more and more engaged in the substantial challenges we face in the world with inequality and sustainability. In keeping with my deep pragmatist sympathies, I increasingly identify with Charles Sanders Pierce's idea that given the "great ocean of truth" that can potentially be uncovered by science, there is a moral burden to do things that have social value. (As an aside, I think that there is social value in understanding the natural world, so I don’t mean to imply a crude instrumentalism here.) In effect, there is a lot of cool science to be done; one may as well do something of relevance.  I personally have little patience for people who pursue racist or otherwise socially divisive agendas and cloak their work in a veil of  free scientific inquiry.  This said, I worry when advocacy interferes with intellectual fairness or an unwillingness to accept that one's position is not actually true.

I think that we are fooling ourselves if we believe that our norms somehow don't have an effect on our research.  Recognizing what these norms that shape your research – whether implicitly or explicitly – helps you manage your bias. Yes, I said manage. I'm not sure we can ever completely eliminate it. I see this as more of a management of a necessary trade-off, drawing an analogy between the practice of science and a classic problem in statistics, between bias and variance. The more biased one is, the less variance there is in the outcome of one’s investigation. The less bias, the greater the likelihood that results will differ from one’s expectations (or wishes). Recognizing how norms shape our research also deals with that murky area of pre-science: where do our ideas for what to study come from?

How do your own norms and values influence your research?

Some of the the norms that shape my own research and teaching include:

transparency: science works best when it is open. This places a premium on sharing data, methods, and communicating results in a manner that maximizes access to information. As a simple example, this norm shapes my belief that we should not train students from poor countries in the use of proprietary software (and other technologies) that they won't be able to afford when they return to their home countries when there are free or otherwise open-source alternatives.

fairness: this naturally includes a sense of social justice or people playing on an equal playing field, but it also includes fairness to different ideas, alternative hypotheses, the possibility that one is wrong. This type of fairness is essential for one's credibility as a public intellectual in science (particularly supporting policy), as noted eloquently in this interview with Dick Lewontin.

respect for people's ultimate rationality: Trying to understand the social, ecological, and economic context of people's decision-making, even if it violates our own normative – particularly market-based economic – expectations.

flexibility: solving real problems means that we need to be flexible in our approach, willing to go where the solutions lead us, learning new tools and collaborating. Flexibility also means a willingness to give up on a research program that is doing harm.

good-faith communication: I believe that there is no room for obscurantism in the academy of the 21st century. This includes public communication. There are, of course, complexities here with regard to the professional development of young scholars.  One of the key trade-offs for young scholars is the need for professional advancement (which comes from academic production) and activism, policy, and public communication. Within the elite universities, the reality is that neither public communication nor activism count much for tenure. However, as Jon Krosnick noted, tenure is a remarkable privilege and, while it may seem impossibly far away for a student just finishing a Ph.D., it’s not really. Once you prove that you have the requisite disciplinary chops, you have plenty of time to to use tenure for what it is designed for (i.e., protecting intellectual freedom) and engaging in critical public debate and communication.

humility: solving problems (in science and society) means caring more about the answer to a problem than one's own pet theory. Humility is intimately related to respect for others' rationality.  It also means recognizing the inherently collaborative nature of contemporary science: giving credit where it is due, seeking help when one is in over one’s head, etc. John DeGioia, President of Georgetown University, quoted St. Augustine in his letter of support for Georgetown Law Student, Sandra Fluke against the crude attacks by radio personality Rush Limbaugh and I think those words are quite applicable here as well.  Augustine implored his interlocutors to "lay aside arrogance" and to "let neither of us assert that he has found the truth; let us seek it as if it were unknown to both." This is not a bad description of the way that science really should work.

What room and role do you see for normative research in your field?

I believe that there is actually an enormous amount of room for normative research, if by "normative research," we mean research that has the potential to have a positive effect on people's lives. If instead we mean imposing values on people, then I am less sure of its role.

Anthropology is often criticized from outside the field, and to a lesser extent, from within it for being overly politicized. You can see this in Nicholas Wade’s critical pieces in the New York Times Science Times section following the American Anthropological Association’s executive committee excising of the word "science" from the field’s long-range planning document. Wade writes,

The decision [to remove the word 'science' from the long-range planning document] has reopened a long-simmering tension between researchers in science-based anthropological disciplines — including archaeologists, physical anthropologists and some cultural anthropologists — and members of the profession who study race, ethnicity and gender and see themselves as advocates for native peoples or human rights.

This is a common sentiment. And it is a complete misunderstanding. It suggests that scientists can't be advocates for native peoples or human rights.  It also suggests that one can't study race, ethnicity, or gender from a scientific perspective.  Both these ideas are complete nonsense.  For all the leftist rhetoric, I am not impressed with the actual political practice of what I see in contemporary anthropology. There is plenty of posturing about power asymmetries and identity politics but it is always done in such a mind-numbingly opaque language and with no apparent practical tie-in to policies that make people's lives better. And, of course, there is the outright disdain for "applied" work one sees in elite anthropology departments.

Writing specifically about Foucault, Chomsky captured my take on this whole mode of intellectual production:

The only way to understand [the mode of scholarship] is if you are a graduate student or you are attending a university and have been trained in this particular style of discourse. That's a way of guaranteeing...that intellectuals will have power, prestige and influence. If something can be said simply, say it simply, so that the carpenter next door can understand you. Anything that is at all well understood about human affairs is pretty simple.

Ultimately, the simple truths about human affairs that I find anyone can relate to are subsistence, health, and the well-being of one’s children. These are the themes at the core of my own research and I hope that the work I do ultimately can effect some good in these areas.

Ecology, Evolution, and Human Health

Yesterday, I spent most of the day collecting content for my upcoming classes this spring and getting the course web sites together.  For the first time in a while, I will (officially) be teaching two classes in one quarter (which effectively means teaching three or four when I add the other things like lab meetings in).  The first is our graduate class on statistics in the anthropological sciences.  I taught something like this back in the old department (i.e., Anthropological Sciences) but haven't taught it in years (though a Google search for "department of anthropological sciences stanford" turns up the syllabus for this class).  It is technically a requirement for Ph.D. students in the Ecology and Environment focus within Anthropology, so it's about time.  It will be fun to teach again and we're looking to use the class as a platform to develop resources for anthropologists doing statistical work (more later).

The other class that I will be teaching starting next week is Ecology, Evolution, and Human Health, a class I first taught last year. This class is meant to be an introduction to the Ecology and Environment undergraduate focus in Anthropology.  I'm actually really looking forward to teaching it again.  The course material forms the core of a book I am writing on human population biology and my attempts at improving the lectures has done wonders for my writing output of late.  We'll see what happens when the quarter actually starts. Hopefully, between trips to Rwanda and Tanzania and moving into Arroyo House this summer, I will find time to finish it!

Back in December, when the is-anthropology-science kerfuffle was going strong, I wrote a blog post in which I suggested that if you want to feel good about the future of scientific anthropology (which, I admit, can sometimes be difficult, even for an obstinate optimist), all you need to do is look at the great work coming from the new generation of trans-disciplinary anthropologists (and other biosocial scientists).  At the time, I put together a short list of people whose work I greatly admire.  These included:

  • Craig Hadley at Emory on food security and psychological well-being
  • Amber Wutich at ASU on vulnerability, water security, and common-pool resources
  • Lance Gravlee at UF on the embodiment of racial discrimination and its manifestations in health
  • Brooke Scelza at UCLA on parental investment and childhood outcomes
  • Dan Hrushka at ASU on how cultural beliefs, norms and values interact with economic constraints to produce health outcomes
  • Crickette Sanz at Washington University on multi-ape ecology of the Goualougo Triangle, Republic of Congo
  • Herman Pontzer at CUNY on measuring daily energy expenditures in hunter-gatherers
  • Rebecca and Douglas Bird on subsistence and signaling among Martu foragers

In preparing for Anthro 31, I started to put together a list of links to people doing the kind of work we will discuss.  In a pique of obsessiveness yesterday, I greatly expanded that list.  It occurred to me that this list is somewhat orphaned in an obscure directory for a particular class I occasionally teach and that it would make sense to share it more generally.  So, here we go, copied wholesale from my class links page (though that page still contains links to books, professional societies, and other resources for students interested in human ecology, demography, health, etc.):

There are a number of excellent practicing anthropologists who maintain science blogs. Among these are Kate Clancy's (UIUC) Context and Variation, Daniel Lende and Greg Downey's Neuroanthropology, Julienne Rutherford's AAPA BANDIT, and Patrick Clarkin's blog dedicated to biological anthropology, war and health, growth nutrition. Along with Rebecca Stumpf, Kate Clancy is also the director of the Laboratory for Evolutionary Endocrinology (which has its own blog) at the University of Illinois.

Upon further reflection, I think that the University of Illinois has to be a major contender for best place to study biological anthropology. Wow, they've got an amazing group of biological anthropologists there. Stanley Ambrose, Kate Clancy, Paul Garber, Lyle Konigsberg, Steve Leigh, Ripan Malhi, John Polk, Charles Roseman, Laura Shackelford, Rebecca Stumpf. Too many to link to directly. I don't know all of them, but the ones I know are outstanding. Yipes! I think they may be plotting to take over the field.

Back to the blog front, you can always count on gems of anthropological, evolutionary, and political wisdom from Greg Laden as well.

Susan C. Antón (NYU) and Josh Snodgrass (Oregon) organize the Bones and Behavior Working Group, the goal of which is to foster greater synthesis across the different sub-areas of biological anthropology. Of particular interest are their standardized protocols for anthropometry.

Mario Luis Small, at the University of Chicago, has done some really outstanding work measuring how social institutions affect social capital and the impact such differences in social capital actually have for people's well-being.

Richard Bribiescas is the author of Men: Evolutionary and Life History and is director of the Reproductive Ecology Laboratory at Yale. Yale is also now the home to Catherine Panter-Brick who also happens to be the senior editor for medical anthropology at Social Science and Medicine.

A number of excellent human biologists find their home in the Laboratory for Human Biology Research at Northwestern. This includes Bill Leonard, Thom McDade, and Chris Kuzawa. Rumor has it that alumna Elizabeth Sweet is moving back to Northwestern as well. She is doing truly innovative work integrating the rigorous analysis of biomarkers of health (and a bicultural perspective favored by the Northwestern group) and the political economy of economic and social disparities -- really getting at how inequality 'gets under the skin.'  I really look forward to seeing what comes from her future research.

Karen Kramer, in the department formerly known as (Biological) Anthropology at Harvard, is a real leader in integrating evolutionary, demographic, and economic perspectives on human reproduction and the life histories.

Patrick Clarkin at UMass, Boston has a very interesting research program employing biocultural and evolutionary models to understand the effects of war on nutrition and growth among SE Asian diaspora. UMass, Boston is also home to Colleen Nyberg who does great work on acculturation and health, the psychobiology of stress and HPA function, and growth and development.

Julienne Rutherford at the University of Illinois, Chicago School of Dentistry works on the role of the intrauterine environment on health. Of particular interest for this class is her collaborative work on understanding the epigenetic regulation of placental systems of amino acid transport as part of the Cebu Longitudinal Study in the Philippines. UIC also has a number of excellent human biologists scattered about in anthropology, including Betsy Abrams and Crystal Patil, Epidemiology (Bob Bailey) and Community Health Sciences (Nadine Peacock).

Let's not forget our friends across The Pond. Durham may have lost Catherine Panter-Brick to Yale, but they got a number of new folks who, when combined with the veterans, make it a very appealing place to study ecological/evolutionary anthropology. Among the faculty there are my colleagues Gillian Bentley, Rebecca Sear, and Frank Marlowe, and numerous others. Rebecca does very sophisticated work in anthropological demography, while Frank is one of the leading ethnographers of contemporary hunter-gatherers (and my collaborator on our Hadza demography project).

Ruth Mace, in my opinion, does some of the best work in human behavioral ecology right now and she keeps churning out top students at UCL.

I'm looking forward to working with Mhairi Gibson at Bristol on our new project on the transmission dynamics of primate retroviruses and human-wildlife contact in Uganda. She has done excellent work on the behavioral ecology of reproduction and parental investment in Ethiopia.

I will also mention a number of excellent researchers who teach classes that are relevant to Ecology, Evolution, and Human Health:

Mark Moritz at Ohio State University has established a Hunter-Gatherer Wiki is conjunction with his course on Hunter-Gatherers. Mark came and gave a terrific talk on livestock exchanges among FulBe pastoralists at the MAPSS colloquium this year.

Mike Gurven at UCSB teaches a course on the behavioral ecology of hunter-gatherers. Mike does some of the most interesting biodemographic work out there these days.

Bruce Winterhalder at UC Davis, a founding father of human behavioral ecology, has a very interesting course on classics in cultural ecology.

Claudia Valeggia, at Penn, does great work among the Toba people of Argentina teaches a class on reproductive ecology.

Lots of good people. Lots of good work.  Surely, there is reason for optimism...

That's How Science Works

The RealClimate blog has a very astute entry on how the controversy surrounding the recent report in the prestigious journal Science that bacteria living in the arsenic-rich waters of Mono Lake in California can substitute arsenic for phosphorous in their DNA.  If true, this would be a major finding because it expands the range of environments in which we could conceivably find extraterrestrial life.  In effect, this result would suggest a wider range of building blocks for life.  Pretty heavy stuff. Now, I am way out of my depth on this topic, but it sounds like the paper published in Science suffers from some fairly serious problems. Some of the problems noted by experts in the field have been assembled by Carl Zimmer on his blog.  Carl also provides a pithy treatment of the controversy in an article at Slate.com. John Roach has a similarly excellent review of the controversy, including what we learn about science from it on his Cosmic Log blog.

Regardless of the scientific merits of this work, this episode is actually an instructive example of the way that science works. As the RealClimate folks write,

The arseno-DNA episode has displayed this process in full public view. If anything, this incident has demonstrated the credibility of scientists, and should promote public confidence in the scientific establishment.

The post then goes on to list three important lessons we can draw from this whole incident:

  1. "Major funding agencies willingly back studies challenging scientific consensus." It helps if the challenge to scientific consensus is motivated by carefully reasoned theoretical challenges or, even better, data that challenge the consensus.  Some yahoo saying that evolution is "just a theory" or that climate change isn't real because it was really cold last winter isn't enough. In the case of arseno-DNA, as Carl Zimmer notes, the National Academy of Sciences published a report in 2007 that suggested the theoretical possibility of arsenic-based biology.  Carl also notes that some of the authors of this report are highly critical of the Science paper as well. The report challenged the orthodoxy that phosphate was a necessary building block of DNA, and the report's author's later called out NASA (the major funding source for this kind of extreme biology) for publishing sloppy science.  Lots of orthodoxy being challenged here...
  2. "Most everyone would be thrilled to overturn the consensus. Doing so successfully can be a career-making result. Journals such as Science and Nature are more than willing to publish results that overturn scientific consensus, even if data are preliminary – and funding agencies are willing to promote these results." Individual scientists have enormous individual and institutional incentives to overturn orthodoxies if it is within their power. You become a star when you pull this feat off. And you better believe that every funding agency out there would like to take credit for funding the critical research that helped overturn a fundamental scientific paradigm.
  3. "Scientists offer opinions based on their scientific knowledge and a critical interpretation of data. Scientists willingly critique what they think might be flawed or unsubstantiated science, because their credibility – not their funding – is on the line." As a scientist, you have to do this if you are going to be taken seriously by your peers -- you know, the ones who do all that peer review that climate deniers, e.g., seem to get their collective panties in a wad about?

The RealClimate piece summarizes by noting:

This is the key lesson to take from this incident, and it applies to all scientific disciplines: peer-review continues after publication. Challenges to consensus are seriously entertained – and are accepted when supported by rigorous data. Poorly substantiated studies may inspire further study, but will be scientifically criticized without concern for funding opportunities. Scientists are not "afraid to lose their grant money".

Read the RealClimate post to get the full story. Obviously, these authors (who do excellent science and amazing public education work, a rare combination) are interested in what this controversy has to say about accusations of bias in climate science -- check out the RealClimate archives for some back-story on this. However, the post is so much more broadly applicable, as they note in the quote above. Science is not a monolithic body of information; it is a process, a system designed to produce positive (as opposed to normative) statements about the world around us. When it works correctly, science is indifferent to politics or the personal motivations of individual scientists because results get replicated.  Everything about a scientific paper is designed to allow other researchers to replicate the results that are presented in that paper.  If other researchers can't replicate some group's findings, those findings become suspect (and get increasingly so as more attempts to replicate fail).

So what does this mean for Anthropology as a science? You may remember that there has been some at times shrill "discussion" (as well as some genuine intellectual discussion) about the place for science in Anthropology and the American Anthropological Association in particular. For me, replicability is a sine qua non of science. The nature of much anthropological research, particularly research in cultural anthropology, makes the question of replication challenging. When you observe some group of people behaving in a particular way in a particular place at a particular time, who is to say otherwise? I don't claim to have easy answers here, but there are a few things we can do to ensure the quality of our science.

First, we need to have scientific theories that are sufficiently robust that they can generate testable predictions that transcend the particularities of time and place. Results generated in one population/place/time can then be challenged by testing in other populations/places/times. Of course, it is of the utmost importance that we try to understand how the differences in population and place and time will change the results, but this is what our research is really about, right?  When we control for these differences, do we still see the expected results?

Second, we need to be scrupulous in our documentation of our results and the methods we employ to generate these results.  You know, like science? It's never easy to read someone else's lab notebook, but we need to be able to do this in anthropology, at least in principle.  Going back to the raw data as they are reduced in a lab notebook or its equivalent is probably the primary means through which scientific fraud is discovered. Of course, there are positive benefits to having scrupulously-kept field notes as well.  They serve as a rich foundation for future research by the investigator, for instance.

Third, we need to be willing to share our data. This is expected in the natural sciences (in fact, it is a condition for publication in journals like Science and Nature) and it should be in Anthropology as well.

I think that the points of the RealClimate post all apply to anthropology as well. Surrounding the latest brouhaha on science in anthropology, one hears a lot of grousing about various cartels (e.g., the AAA Executive Board, the editorial boards of various journals, etc.) that keep anthropologists of different strips (yes, it happens on both sides) from receiving grants or getting published or invited to serve on various boards, etc. Speaking from my experience as both panelist and applicant, I can confidently say that the National Science Foundation's Cultural Anthropology Program funds good cultural anthropology of a variety of different approaches (there are also other BCS programs that entertain, and sometimes fund, applications from anthropologists) and the panel will happily fund orthodoxy-busting proposals if they are sufficiently meritorious.  The editorial position of American Ethnologist not in line with your type of research?  If you've done good science, there are lots of general science journals that will gladly take interesting and important anthropology papers (and, might I add, have much higher impact factors). I co-authored a paper with Rebecca and Doug Bird that appeared in PNAS not too long ago. Steve Lansing has also had a couple nice papers in PNAS as does Richard McElreath, or Herman Pontzer, or ... a bunch of other anthropologists!  Mike Gurven at UCSB has had some luck getting papers into Proceedings of the Royal Society B.  Mhairi Gibson and Ruth Mace have papers in Biology Letters and PLoS Medicine.  Rebecca Sear has various papers in Proceedings of the Royal Society B. Monique Borgerhoff Mulder and a boat-load of other anthropologists (and at least one economist) have a paper in Science. Ruth Mace has papers in most of these journals as well as at least one in Science. Rob Boyd, Richard McElreath, Joe Henrich, and I all even have papers about human social behavior, culture, etc. in theoretical biology journals such as Theoretical Population Biology and the Journal of Theoretical Biology. There's lots more.  As with my previous post, this is a total convenience sample of work with which I am already familiar. The point is that there are outlets for good scientific anthropology out there even if people like me are unlikely to publish in journals like PoLAR.

So, I'm sanguine about the process of science and the continuing ability for anthropologists to pursue science. My winter break is drawing to a close and I'm going to try to continue some of this myself!

Risk-Aversion and Finishing One's Dissertation

It's that time of the year again, it seems, when I have lots of students writing proposals to submit to NSF to fund their graduate education or dissertation research.  This always sets me to thinking about the practice of science and how one goes about being a successful scientist. I've written about "productive stupidity" before, and I still think that is very important. Before I had a blog, I composed a series of notes on how to write a successful NSF Doctoral Dissertation Improvement Grant when I saw the same mistakes over and over again sitting on the Cultural Anthropology panel.

This year, I've find myself thinking a lot about what Craig Loehle dubbed "the Medawar Zone." This is an nod to the great British scientist, Sir Peter Medawar, whose book, The Art of the Soluble: Creativity and Originality in Science, argued that best kind of scientific problems are those that can be solved.  In his classic (1990) paper Loehle argues that "there is a general parabolic relationship between the difficulty of a problem and its likely payoff." Re-reading this paper got me to thinking.

In Loehle's figure 1, he defines the Medawar Zone.  I have reproduced a sketch of the Medawar Zone here.

medawar-zoneNow, what occurred to me on this most recent reading of this paper is that for a net payoff curve to look like this, the benefits with increased difficulty of the problem are almost certainly concave.  That is, they show diminishing marginal returns to increased difficulty.  Hard to say what the cost curve with difficulty would be – linear? convex? Either way, there is an intermediate maximum (akin to Gadgil and Bossert's analysis of intermediate levels of reproductive effort) and the best plan is to pick a problem of intermediate difficulty because that is where the scientific benefits, net of the costs, are maximized.

Suppose that a dissertation is a risky endeavor.  This is not hard for me to suppose since I know many people from grad school days who had at least one failed dissertation project.  Sometimes this led to choosing another, typically less ambitious project.  Sometimes it led to an exit from grad school, sans Ph.D.  Stanford (like Harvard now, but not when I was a student) funds its Ph.D. students for effectively the entirety of their Ph.D.  This is a great thing for students because nothing interferes with your ability to think and be intellectually productive than worrying about how you're going to pay rent.  The downside of this generous funding is that students do not have much time to come up with an interesting dissertation project, write grants, go to the field, collect data, and write up before their funding runs out. So, writing a dissertation is risky.  There is always a chance that if you pick too hard a problem, you might not finish in time and your funding will run out. Well, it just so happens that the combination of a concave utility function and a risk of failure is pretty much the definition of a risk-averse decision-maker.

Say there is an average degree of difficulty in a field.  A student can choose to work on a topic that is more challenging than the average but there is the very real chance that such a project will fail and in order for the student to finish the Ph.D., she will have to quickly complete work on a problem that is easier than the average.  Because the payoff curve with difficulty is concave, it means that the amount you lose relative to the mean if you fail is much greater than the amount you gain relative to the mean if you succeed.  That is, your downside cost is much greater than your upside benefit.

risk-aversionIn the figure, note that d1>>d2.  Here, I have labeled the ordinate as w, which is the population genetics convention for fitness (i.e., the payoff).  The bar-x is the mean difficulty, while x2 and x1 are the high and low difficulty projects respectively.

The way that economists typically think about risk-aversion is that a risk-averse agent is one who is willing to pay a premium for certainty.  This certainty premium is depicted in the dotted line stretching back horizontally from the vertical dashed line at x=xbar to the utility curve.  The certain payoff the agent is willing to accept vs. the uncertain mean is where this dotted line hits the utility curve. Being at this point on the utility curve (where you have paid the certainty premium) probably puts you at the lower end of the Medawar Zone envelope, but hopefully, you're still in it.

I think that this very standard analysis actually provides the graduate student with pretty good advice. Pick a project you can do and maybe be a bit conservative.  The Ph.D. isn't a career – it's a launching point for a career. The best dissertation, after all, is a done dissertation.  While I think this is sensible advice for just about anyone working on a Ph.D., the thought of science progressing in such a conservative manner frankly gives me chills.  Talk about a recipe for normal science!  It seems what we need, institutionally, is a period in which conservatism is not the best option. This may just be the post-doc period.  For me, my time at the University of Washington (CSSS and CSDE) was a period when I had unmitigated freedom to explore methods relevant to what I was hired to do.  I learned more in two years than in – I'd rather not say how many – years of graduate school. The very prestigious post-doctoral programs such as the Miller Fellowships at Berkeley or the Society of Fellows at Harvard or Michigan seem like they are specifically designed to provide the environment where the concavity of the difficulty-payoff curve is reversed (favoring gambles on more difficult projects).

There is, unfortunately, a folklore that has diffused to me through graduate student networks that says that anthropologists need to get a faculty position straight out of their Ph.D. or they will never succeed professionally.  This is just the sort of received wisdom that makes my skin crawl and, I fear, is far too common in our field.  If our hurried-through Ph.D.s can't take the time to take risks, when can we ever expect them to do great work and solve truly difficult problems?

More on Science in the Obama Times

As a follow-up to my post on science and the Obama Inaugural, I wanted to note a terrific essay  by Dennis Overbye on the civic virtues of science in the New York Times. He argues that virtue emerges from the process of science: "Science is not a monument of received Truth but something that people do to look for truth."  Continuing, he writes,

That endeavor, which has transformed the world in the last few centuries, does indeed teach values. Those values, among others, are honesty, doubt, respect for evidence, openness, accountability and tolerance and indeed hunger for opposing points of view. These are the unabashedly pragmatic working principles that guide the buzzing, testing, poking, probing, argumentative, gossiping, gadgety, joking, dreaming and tendentious cloud of activity — the writer and biologist Lewis Thomas once likened it to an anthill — that is slowly and thoroughly penetrating every nook and cranny of the world.

There is a certain egalitarian, round-table ethos to science done well.  It doesn't matter what degrees you have or where from.  What matters is whether you ask and answer interesting questions. Of course, institutions that support science frequently care about degrees and where they're from, but in my experience, good scientists don't. While there are certainly barriers to entry (e.g., the cost of higher education, the difficulty of mastering a subject), there is no fundamentally esoteric knowledge in science.  When it's working right, everything is transparent.  It has to be because no one will believe you unless it can be repeated.

I certainly hope the rhetoric of respect for science and the idea that empirical research will inform policy continues and gets translated into tangible support for research in the coming years.

Data, Statistics, Science, Imagination and Common Purpose

In President Obama's Inaugural Address, "data" and "statistics" were the 247th and 249th words spoken. Science was very much foregrounded in the President's address:

We will restore science to its rightful place and wield technology's wonders to raise health care's quality and lower its costs.

We will harness the sun and the winds and the soil to fuel our cars and run our factories. And we will transform our schools and colleges and universities to meet the demands of a new age.

All this we can do. All this we will do.

There is tremendous congruence between this stated respect for science and the somber chastisement over our collective "failure to make hard choices and prepare the nation for a new age."  The Bush administration sought to suppress science because facts about the world can be politically inconvenient.  The implications of scientific research don't always jibe so well with our desire for short-term gratification.  I hope that President Obama can truly help to focus our political debates onto the serious decisions that we need to make as individuals and as a society.  

I am thrilled by the prospect that the age of know-nothingness in Washington DC might be over, but am also realistic that these things take time.  Let's hope we can make this change while we still actually have time!

Regaining a Science and Technology Edge

Here's a crazy idea from venture capitalist John Doerr: Don't kick foreign students whom we have trained in science and engineering at our elite universities out of the country after they graduate.  Let them work in the United States where their education has almost certainly been subsidized in some way by the government and, ultimately, American taxpayers -- "staple a green card to the diploma" as it were. This guy is nuts.  That is way too sensible...

On Productive Stupidity

This essay by UVA cell biologist, Martin Schwartz, pretty much encapsulates the way I feel about the practice of science.  If I perfectly understand everything I'm doing at any given moment, something is wrong.  I want to be uncomfortable in my understanding of any given question I am asking or method that I am employing.  Otherwise, I don't think that I would be growing as either a scientist and humanist.

Scientific perspectives in Anthropology are increasingly rare. This past year, I sat on our department's graduate admissions committee and I was struck by a theme that emerged in the personal statements prospective students made.  They really had it all figured out.  A typical essay would have the form "At Stanford I will expand on topic X and show Y."  Sure, they'd learn probably some rhetorical tricks and gather some social capital along the way, but what more did they really need to know about the world around them? My perspective on this was how can you know what you will show if you haven't even designed your study or collected data?  It would be so refreshing to read a personal statement that took the form "Isn't it funny the way X does Y?  I wonder why that is." The Jerry Seinfeld approach to science, I suppose. Quoting Schwartz's essay,

Productive stupidity means being ignorant by choice. Focusing on important questions puts us in the awkward position of being ignorant. One of the beautiful things about science is that it allows us to bumble along, getting it wrong time after time, and feel perfectly fine as long as we learn something each time. No doubt, this can be difficult for students who are accustomed to getting the answers right. No doubt, reasonable levels of confidence and emotional resilience help, but I think scientific education might do more to ease what is a very big transition: from learning what other people once discovered to making your own discoveries. The more comfortable we become with being stupid, the deeper we will wade into the unknown and the more likely we are to make big discoveries.

Perhaps we can foster a future generation of productively stupid anthropologists here in the Ecology and Environment program within the Anthropology department.  Fostering stupidity in a world too full or arrogant certitude may be one of the greatest challenges facing the academy of the twenty-first century.  Here's to bumbling...